Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Type of study
Language
Year range
1.
Braz. j. med. biol. res ; 48(9): 798-804, Sept. 2015. ilus
Article in English | LILACS | ID: lil-756403

ABSTRACT

Stroke is the third most common cause of death worldwide, and most stroke survivors present some functional impairment. We assessed the striatal oxidative balance and motor alterations resulting from stroke in a rat model to investigate the neuroprotective role of physical exercise. Forty male Wistar rats were assigned to 4 groups: a) control, b) ischemia, c) physical exercise, and d) physical exercise and ischemia. Physical exercise was conducted using a treadmill for 8 weeks. Ischemia-reperfusion surgery involved transient bilateral occlusion of the common carotid arteries for 30 min. Neuromotor performance (open-field and rotarod performance tests) and pain sensitivity were evaluated beginning at 24 h after the surgery. Rats were euthanized and the corpora striata was removed for assay of reactive oxygen species, lipoperoxidation activity, and antioxidant markers. Ischemia-reperfusion caused changes in motor activity. The ischemia-induced alterations observed in the open-field test were fully reversed, and those observed in the rotarod test were partially reversed, by physical exercise. Pain sensitivity was similar among all groups. Levels of reactive oxygen species and lipoperoxidation increased after ischemia; physical exercise decreased reactive oxygen species levels. None of the treatments altered the levels of antioxidant markers. In summary, ischemia-reperfusion resulted in motor impairment and altered striatal oxidative balance in this animal model, but those changes were moderated by physical exercise.


Subject(s)
Animals , Male , Rats , Brain Ischemia/complications , Corpus Striatum/metabolism , Motor Disorders/prevention & control , Oxidative Stress/physiology , Physical Conditioning, Animal/physiology , Reperfusion Injury/complications , Brain Ischemia/metabolism , Catalase/metabolism , Disease Models, Animal , Glutathione/metabolism , Lipid Peroxidation , Motor Disorders/etiology , Oxidation-Reduction , Pain/physiopathology , Rats, Wistar , Reactive Oxygen Species/analysis , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL